
Numerical Methods in MATLAB

Center for Interdisciplinary Research and Consulting

Department of Mathematics and Statistics

University of Maryland, Baltimore County

www.umbc.edu/circ

Winter 2008



Mission and Goals: The Center for Interdisciplinary Research and Consulting
(CIRC) is a consulting service on mathematics and statistics provided by the Depart-
ment of Mathematics and Statistics at UMBC. Established in 2003, CIRC is dedicated
to support interdisciplinary research for the UMBC campus community and the pub-
lic at large. We provide a full range of consulting services from free initial consulting
to long term support for research programs.

CIRC offers mathematical and statistical expertise in broad areas of applications,
including biological sciences, engineering, and the social sciences. On the mathematics
side, particular strengths include techniques of parallel computing and assistance with
software packages such as MATLAB and COMSOL Multiphysics (formerly known as
FEMLAB). On the statistics side, areas of particular strength include Toxicology,
Industrial Hygiene, Bioequivalence, Biomechanical Engineering, Environmental Sci-
ence, Finance, Information Theory, and packages such as SAS, SPSS, and S-Plus.

Copyright c© 2003–2008 by the Center for Interdisciplinary Research and Consult-
ing, Department of Mathematics and Statistics, University of Maryland, Baltimore
County. All Rights Reserved.

This tutorial is provided as a service of CIRC to the community for personal uses
only. Any use beyond this is only acceptable with prior permission from CIRC.

This document is under constant development and will periodically be updated. Stan-
dard disclaimers apply.

Acknowledgements: We gratefully acknowledge the efforts of the CIRC research
assistants and students in Math/Stat 750 Introduction to Interdisciplinary Consulting
in developing this tutorial series.

MATLAB is a registered trademark of The MathWorks, Inc., www.mathworks.com.



3

1 Numerical ODEs

In this section we discuss numerical ordinary differential equations in Matlab. Matlab
provides a number of ODE solvers; we will focus our attention to ode45 which uses
a four stage Runge-kutta method to solve a give ordinary differential equation. We
will first see how ones an initial value problem of form

dy

dt
= f(t, y),

y(t0) = y0.

We can solve such problems using

[T Y]=ode45(f, tspan, y0)

In the above syntax, the input argument f specifies the right hand side function of
the differential equations, tspan is the time interval in which we want to solve the
equation, and y0 is the initial value. The output argument Y gives the numerical
solution over the discretized time interval T. Consider the following problem,

dy

dt
= t− y,

y(0) = 1.

One can solve this problem analytically to get the solution, y(t) = 2e−t + t − 1. To
solve the problem numerically, we can use

>> f = @(t, y)(t - y)

f =

@(t, y)(t - y)

>> y0=1;

>> [T Y] = ode45(f, [0 2], y0);

The reader can see how good the numerical solution is by plotting both the numerical
solution and the true solution in the same plot; better yet one can compute and plot
the approximation error to get a better picture of how good the solution was. The
following Matlab code can used to solve the above problem; it also plots the numerical
solution, the true solution, and the approximation error (see Figure 1).

function testode

y0 = 1;

[T Y] = ode45(@frhs, [0 2], y0);

y = ftrue(T);

subplot(311);

plot(T, Y);



4 1 NUMERICAL ODES

title(’Approximate Solution’);

subplot(312);

plot(T, y);

title(’True Solution’);

subplot(313);

plot(T, abs(Y - y));

title(’Approximation Error’);

% subfunctions

function f=frhs(t, y);

f = t - y;

function f=ftrue(t);

f = 2*exp(-t)+t-1;

Figure 1: Using ode45 to solve an ODE

We can also solve systems of ODEs using ode45. To illustrate the idea we solve
a classical predator-prey system. Let’s consider the interaction of foxes and rabbits,
where foxes are predators and rabbits are the prey. Denote, the rabbit population at
any time by y1(t) and the fox population by y2(t). The system of differential equations



5

modeling the dynamics of this predator-prey system is given by the following

dy1

dt
= gy1 − d1y1y2

dy2

dt
= −d2y2 + cy1y2

In above equations the parameters g, d1, d2, and c denote:

1. g = natural growth rate of rabbit population in absence of foxes.

2. d1 = the rate at which foxes die in the absence of rabbits.

3. d2 = the death rate per each (deadly) encounter of rabbits due to foxes.

4. c = the contribution to fox population of each (food making) encounter of
rabbits and foxes to fox population.

In addition to specifying the model parameters, we also need to specify the initial
population of foxes and rabbits at t = 0. Let’s choose the model parameters as below:

• g = 0.04;

• d1 = 0.001;

• d2 = 0.1;

• c = 0.002;

Also, we assume the initial populations start at y1(0) = 100 and y2(0) = 100. To
solve the resulting initial value problem, we can use ode45; the Matlab function
predatorprey provided below solves the problem using ode45 and plots the popula-
tions of foxes and rabbits on the same plot (Figure 2); moreover, the function creates
a phase-plane diagram (Figure 2) which is a useful tool in analyzing such systems.



6 1 NUMERICAL ODES

function predatorprey

[T,Y] = ode45(@yprime,[0 100],[100 100]);

subplot(2,1,1);

plot(T,Y(:,1),’-’, T,Y(:,2), ’--’);

title(’Population Dynamics of Foxes and Rabbits’);

legend(’Rabbit Population’, ’Fox Population’);

xlabel(’t’);

ylabel(’Population’);

grid on;

subplot(2,1,2);

plot(Y(:,1), Y(:,2));

title(’Phase Plane Diagram for the fox-rabbit population’);

xlabel(’Rabbits’);

ylabel(’Foxes’);

grid on;

%rhs function

function dy = yprime(t, y)

g = 0.4;

d1 = 0.001;

d2 = 0.1;

c = 0.002;

dy = [g*y(1)-d1*y(1)*y(2);

c*y(1)*y(2) - d2*y(2)];



7

Figure 2: Dynamics of a predator prey (fox/rabbit) system

The reader can further experiment with the above Matlab code to see the outcome
with different parameters and different initial populations.



8 1 NUMERICAL ODES

Our discussion of Matlab’s ODE solvers here focused on the example of the func-
tion ode45, which is Matlab’s most popular ODE solver. Matlab has a suite of solvers,
see doc ode45 for full documentation and recommendations for when to use which
method in table form. We complement this table here by discussing the methods and
providing some additional information. See this documentation also for the list of
options used to control the method, such as relative and absolute tolerances on the
error estimator, as well as for a list of references on the subject of ODE solvers and
the methods in particular.

All ODE solvers in Matlab use the same function interface, so it is easy to try
several methods on the same problem and observe their behavior. Also, all methods
compute an estimator for the error of the solution that is used to automatically select
the size of the time step and also of the method order, if it is variable. ODE problems
are roughly classified into stiff and nonstiff problems. General-purpose ODE solvers
in Matlab that are appropriate for stiff problems are indicated by the letter “s” at
the end of their names, namely ode15s and ode23s. The most important nonstiff
solvers are 45 and ode113. The numbers in the names of the two methods ode15s and
ode113 that are variable-order methods indicate the method order ranging from 1 to
5 and from 1 to 13, respectively. All other methods are fixed-order methods with the
first number indicating the order of the method, such as 4 in ode45 and 2 in ode23s;
the second number indicates the order of the second method used simultaneously in
the error estimator.

The technical definition of the term stiff is difficult, but their practical definition
is readily stated: A problem is stiff, if the automatic step size control of the method
chooses small steps even for large tolerances. This means that the step sizes are
limited by the stability of the method and not the accuracy requested by the user.
Note that all ODE solvers in Matlab use automatic step size control based on a
sophisticated error estimator, hence the accuracy of their solution is ensured; but if
it takes a longer time to compute the solution with nonstiff solvers such as ode45 or
ode113 than with a stiff solver such as ode15s, the problem is considered stiff. In
summary, for a particular problem, try ode45 or ode113 as potential nonstiff solvers
and try also ode15s as potential stiff solvers. Then continue using whichever method
performed most efficiently.



9

2 Matlab Toolboxes

In this section, we will discuss Matlab Toolboxes. In general, Matlab toolboxes extend
the capabilities of Matlab by providing highly efficient routines which are specialized
to handle specific situations. For example, if one is solving some problems in the area
of neural networks, the Neural Network Toolbox provides powerful tools to handle
problems of that type. As another example, Matlab’s Statistics Toolbox provides a
wide range of statistical routines.

A good way to learn about a Matlab Toolbox is studying the associated Get-
ting Started Guide; another good place to start is the user’s guide for the associated
Toolbox. For example, in Figure 3, we have displayed the help screen for Matlab’s
Statistics Toolbox (from Matlab’s Help facility). We can see the various documenta-
tions provided for a toolbox.

Figure 3: Matlab’s Statistics Toolbox

To give the readers an idea of the available Matlab toolboxes, a list of widely used
Matlab Toolboxes is provided in Table 1.

To find out which Toolboxes are available in your version of Matlab you can type



10 2 MATLAB TOOLBOXES

Math and Optimization
Optimization Toolbox
Symbolic Math Toolbox
Extended Symbolic Math Toolbox
Partial Differential Equation Toolbox
Genetic Algorithm and Direct Search Toolbox

Statistics and Data Analysis
Statistics Toolbox
Neural Network Toolbox
Curve Fitting Toolbox
Spline Toolbox
Model-Based Calibration Toolbox
Control System Design and Analysis
Control System Toolbox
System Identification Toolbox
Fuzzy Logic Toolbox
Robust Control Toolbox
Model Predictive Control Toolbox
Aerospace Toolbox

Signal Processing and Communications
Signal Processing Toolbox
Communications Toolbox
Filter Design Toolbox
Filter Design HDL Coder Wavelet Toolbox
Fixed-Point Toolbox RF Toolbox

Image Processing
Image Processing Toolbox
Image Acquisition Toolbox
Mapping Toolbox

Test and Measurement
Data Acquisition Toolbox
Instrument Control Toolbox
Image Acquisition Toolbox
SystemTest OPC Toolbox

Computational Biology
Bioinformatics Toolbox

Financial Modeling and Analysis
Financial Toolbox
Financial Derivatives Toolbox
GARCH Toolbox
Datafeed Toolbox
Fixed-Income Toolbox

Table 1: A list of Matlab Toolboxes



11

ver

in Matlab’s command prompt. Issuing the ver command will provide something like
the following:

>> ver

-------------------------------------------------------------------------------------

MATLAB Version 7.3.0.298 (R2006b)

MATLAB License Number: 334413

Operating System: Linux 2.4.31-EL3SMPMath-iptables #1 SMP Thu Jun 2 21:02:32 EDT 2005 i686

Java VM Version: Java 1.5.0 with Sun Microsystems Inc. Java HotSpot(TM)

Client VM mixed mode, sharing

-------------------------------------------------------------------------------------

MATLAB Version 7.3 (R2006b)

Simulink Version 6.5 (R2006b)

Communications Blockset Version 3.4 (R2006b)

Communications Toolbox Version 3.4 (R2006b)

Control System Toolbox Version 7.1 (R2006b)

Image Processing Toolbox Version 5.3 (R2006b)

Instrument Control Toolbox Version 2.4.1 (R2006b)

MATLAB Compiler Version 4.5 (R2006b)

Mapping Toolbox Version 2.4 (R2006b)

Neural Network Toolbox Version 5.0.1 (R2006b)

Optimization Toolbox Version 3.1 (R2006b)

Partial Differential Equation Toolbox Version 1.0.9 (R2006b)

Real-Time Workshop Version 6.5 (R2006b)

Robust Control Toolbox Version 3.1.1 (R2006b)

Signal Processing Blockset Version 6.4 (R2006b)

Signal Processing Toolbox Version 6.6 (R2006b)

Simulink Control Design Version 2.0.1 (R2006b)

Spline Toolbox Version 3.3.1 (R2006b)

Statistics Toolbox Version 5.3 (R2006b)

Symbolic Math Toolbox Version 3.1.5 (R2006b)

System Identification Toolbox Version 6.2 (R2006b)

Wavelet Toolbox Version 3.1 (R2006b)

Trademarks

------------------

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC

TargetBox are registered trademarks of The MathWorks, Inc. Other product or

brand names are trademarks or registered trademarks of their respective holders.

Of course, the results may vary depending on the system on which the command
ver is issued.


