
Numerical Methods in MATLAB

Center for Interdisciplinary Research and Consulting

Department of Mathematics and Statistics

University of Maryland, Baltimore County

www.umbc.edu/circ

Winter 2008



Mission and Goals: The Center for Interdisciplinary Research and Consulting
(CIRC) is a consulting service on mathematics and statistics provided by the Depart-
ment of Mathematics and Statistics at UMBC. Established in 2003, CIRC is dedicated
to support interdisciplinary research for the UMBC campus community and the pub-
lic at large. We provide a full range of consulting services from free initial consulting
to long term support for research programs.

CIRC offers mathematical and statistical expertise in broad areas of applications,
including biological sciences, engineering, and the social sciences. On the mathematics
side, particular strengths include techniques of parallel computing and assistance with
software packages such as MATLAB and COMSOL Multiphysics (formerly known as
FEMLAB). On the statistics side, areas of particular strength include Toxicology,
Industrial Hygiene, Bioequivalence, Biomechanical Engineering, Environmental Sci-
ence, Finance, Information Theory, and packages such as SAS, SPSS, and S-Plus.

Copyright c© 2003–2008 by the Center for Interdisciplinary Research and Consult-
ing, Department of Mathematics and Statistics, University of Maryland, Baltimore
County. All Rights Reserved.

This tutorial is provided as a service of CIRC to the community for personal uses
only. Any use beyond this is only acceptable with prior permission from CIRC.

This document is under constant development and will periodically be updated. Stan-
dard disclaimers apply.

Acknowledgements: We gratefully acknowledge the efforts of the CIRC research
assistants and students in Math/Stat 750 Introduction to Interdisciplinary Consulting
in developing this tutorial series.

MATLAB is a registered trademark of The MathWorks, Inc., www.mathworks.com.



3

1 Introduction

In this tutorial, we will introduce some of the numerical methods available in Matlab.
Our goal is to provide some snap-shots of the wide variety of computational tools that
Matlab provides. We will look at some optimization routines, where we mainly focus
on unconstrained optimization.Next, we discuss curve fitting and approximation of
functions using Matlab. Our final topic will be numerical ODEs in Matlab.

Matlab provides a number of specialized toolboxes, which extend the capabilities
of the software. We will have a brief overview of the various toolboxes in Matlab and
will provide a list of some available toolboxes.

• Numerical Optimization

• Data Fitting / Approximation

• Numerical ODEs

• Matlab Toolboxes

2 Unconstrained Optimization

The commands we discuss in this section are two of the several optimization routines
available in Matlab. First we discuss fminbnd, which is used to minimize functions
of one variable. The command,

[x fval] = fminbnd(f, a, b)

finds a local minimizer of the function f in the interval [a, b]. Here x is the local
minimizer found by the command and fval is the value of the function f at that point.
For complete discussion of fminbnd readers can refer to the Matlab’s documentations.
Here we illustrate the use of fminbnd in an example.

Consider the function f(x) = cos(x)− 2 ln(x) on the interval, [π
2
, 4π]. The plot of

the function is depicted in Figure 1. We can first define the function f(x) in Matlab
using

f = @(x)(cos(x) - 2*log(x))

Then we proceed by the following,

>> [x fval] = fminbnd(f, 2, 4)

x =

3.7108



4 2 UNCONSTRAINED OPTIMIZATION

Figure 1: Plot of f(x) = cos(x)− 2 ln(x)
.

fval =

-3.4648

We see that fminbnd returns the (approximate) minimizer of f(x) in the interval [2, 4]
and also computes the value of f(x) at the minimizer. The readers can try to find the
(global) minimizer of f(x) which is seen to be somewhere in [8, 10] using fminbnd.

The next (unconstrained) optimization command we discuss is fminsearch which
can be used to find a local minimizer of a function of several variables. The command,

[x fval] = fminsearch(f,x0)

finds a local minimizer of the function f given the initial guess x0. For complete
discussion of fminsearch readers can refer to the Matlab’s documentations. Here we
illustrate the use of fminsearch in an example.

For a simple example, we minimize the function f(x, y) = x2 + y2 which clearly
has its minimizer at (0, 0). Let’s choose an initial guess of x0 = (0, 0). The following
Matlab commands illustrate the usage of fminsearch

>> f = @(x)(x(1)^2+x(2)^2);

>> x0 = [1;1];

>> [x fval] = fminsearch(f, x0)

x =

1.0e-04 *

-0.2102



5

0.2548

fval =

1.0915e-09

Of course, reader can try fminsearch on more complicated problems and see the
results.

For more information on optimization routines in Matlab, reader can investigate
Matlab’s Optimization Toolbox which includes several powerful optimization tools
which can be used to solve both unconstrained and constrained linear and non-linear
optimization problems.

3 Curve-Fitting

Here we consider the problem of fitting a polynomial of degree (at most) k into the
data points (xi, yi); to do this, we use the command,

p = polyfit(x, y, k)

which fits a polynomial of degree k into the given data points. The output argument
p is a vector which contains the coefficients of the interpolating polynomial. The
method used is least squares, in which we choose a polynomial P of degree k which
minimizes the following:

m∑
i=1

[P (xi)− yi]
2. (3.1)

For example, say we are given the data points

xi yi

--------

1 1

2 0.5

3 1

4 2.5

5 3

6 4

7 5

Suppose we would like to fit a polynomial of degree three into the given data points.
We can use the following Matlab commands to get the interpolating polynomial.

>> xi = 1 : 7;

>> yi = [1 0.5 1 2.5 3 4 5];

>> p = polyfit(xi,yi,3);



6 3 CURVE-FITTING

Once we have the vector p which contains the coefficients of the interpolating poly-
nomial we can use the Matlab function ployval to evaluate the approximating poly-
nomial over a given range of x values. We can proceed as follows:

>> x = 1 :0.1: 7;

>> y = polyval(p, x);

>> plot(xi, yi, ’*’, x, y)

Which produces the Figure 2.

Figure 2: Data fitting in Matlab

Another useful idea is using polyfit to find an approximating polynomial for a
given function. The idea is useful because polynomials are much simpler to work with.
For example one can easily integrate or differential polynomials while it may not be
so easy to do the same for a function which is not so well behaved. As an example, we
consider the problem of approximating the function sin(

√
(x)) on the interval [0, 2π].

The following Matlab commands show how one selects a numerical grid to get data
points which can be used to approximate the function using a polynomial of degree
k (in a least-squares sense).

>> f = @(x)(sin(sqrt(x)));

>> xi = [0 : 0.1 : 2*pi];

>> yi = f(xi);

>> p = polyfit(xi,yi,4);

To see how the function and its approximation compare, we can use the following
commands,

>> x = [0 : 0.01 : 2*pi];

>> y = polyval(p, x);

>> plot(x, f(x), x, y, ’--’);

The result can be seen in Figure 3.



7

Figure 3: Approximation of a function using polynomial data fitting


