
MATH 426 - Assignment 3

June 9, 2008

1 Using For Loops:

Write a Matlab function that given a number n computes n!. The function header should
be as follows

function F = fact(n)

Note that there is already a Matlab function factorial which does this. Obviously you
can’t use that function in your code, but you can use it to check your answers.
After writing the function fact write a script file, test_fact.m, that calls fact for several
values of n. In each case output n and n!.

Remark: Computing factorial using a for loop is not efficient when using Matlab; later
in the course we will see more efficient ways of doing such computations in Matlab.

2 Using if - elseif - else:

Write a Matlab function compvec which given two vectors x and y determines whether or
not they are linearely independent. The function must have the following interface:

compvec(x,y)

To determine whether {x,y} is linearely independent you may use the following approach:

• if x = 0 or y = 0 then {x,y} is a linearely dependent set.

• otherwise, check the angle θ between x and y: if θ = 0 or θ = π (the vectors are parallel)
then they are linearely dependent, else they are linearely independent. Moreover, if
x and y happen to be orthogonal, you program should point that out. The possible
output messages from you function should be the following:

1. Linearly dependent vectors (one of them is zero).

2. Linearly dependent vectors (both non-zero).

3. Linearly independent vectors (orthogonal).

4. Linearly independent vectors.

• Note that given two vectors x and y in Rn the angle θ between them is specified by
the following:

cos(θ) =
x · y

||x||||y||
1

Another (maybe easier way) to solve this problem would be to just check the cosine of the
angle between x and y. Let c = cos(θ). Note that:

• c = 0 corresponds to θ = π
2

(orthogonal vectors),

• c = 1 or c = −1 corresponds to case of parallel vectors (linearely dependent).

Once you are done with programming compvec, write a script file, test_compvec, that calls
the function compvec using the following test cases:

x =

[
1
1

]
, y =

[
0
0

]
,

x =

[
1
2

]
, y =

[
2
4

]
,

x =

[
1
2

]
, y =

[
1
0

]
,

x =

[
1
2

]
, y =

[
−2

1

]
.

Note that the test cases above are vectors in R2, but your program should work for
vectors in Rn for all n ≥ 2.

